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Computer-aided determination of liver volume from healthy subjects is useful for var-
ious applications such as investigating factors influencing the liver size, preoperative 
volumetric assessment of donor liver and printing three-dimensional (3D) models 

(1–3). Segmentation is the key element of these analyses as it eliminates the information 
that does not belong to the liver from the images (4). Up until the recent developments in 
machine learning technology, the semi-automatic methods were accepted as the primary 

PURPOSE 
We aimed to compare the accuracy and repeatability of emerging machine learning-based (i.e., 
deep learning) automatic segmentation algorithms with those of well-established interactive 
semi-automatic methods for determining liver volume in living liver transplant donors at com-
puted tomography (CT) imaging.

METHODS
A total of 12 methods (6 semi-automatic, 6 full-automatic) were evaluated. The semi-automatic 
segmentation algorithms were based on both traditional iterative models including watershed, 
fast marching, region growing, active contours and modern techniques including robust statis-
tics segmenter and super-pixels. These methods entailed some sort of interaction mechanism 
such as placing initialization seeds on images or determining a parameter range. The automatic 
methods were based on deep learning and included three framework templates (DeepMedic, 
NiftyNet and U-Net), the first two of which were applied with default parameter sets and the last 
two involved adapted novel model designs. For 20 living donors (8 training and 12 test data-
sets), a group of imaging scientists and radiologists created ground truths by performing manual 
segmentations on contrast-enhanced CT images. Each segmentation was evaluated using five 
metrics (i.e., volume overlap and relative volume errors, average/root-mean-square/maximum 
symmetrical surface distances). The results were mapped to a scoring system and a final grade 
was calculated by taking their average. Accuracy and repeatability were evaluated using slice-
by-slice comparisons and volumetric analysis. Diversity and complementarity were observed 
through heatmaps. Majority voting (MV) and simultaneous truth and performance level estima-
tion (STAPLE) algorithms were utilized to obtain the fusion of the individual results.

RESULTS
The top four methods were automatic deep learning models, with scores of 79.63, 79.46, 77.15, 
and 74.50. Intra-user score was determined as 95.14. Overall, automatic deep learning segmen-
tation outperformed interactive techniques on all metrics. The mean volume of liver of ground 
truth was 1409.93±271.28 mL, while it was calculated as 1342.21±231.24 mL using automatic 
and 1201.26±258.13 mL using interactive methods, showing higher accuracy and less variation 
with automatic methods. The qualitative analysis of segmentation results showed significant di-
versity and complementarity, enabling the idea of using ensembles to obtain superior results. 
The fusion score of automatic methods reached 83.87 with MV and 86.20 with STAPLE, which 
were only slightly less than fusion of all methods (MV, 86.70) and (STAPLE, 88.74).

CONCLUSION
Use of the new deep learning-based automatic segmentation algorithms substantially increases 
the accuracy and repeatability for segmentation and volumetric measurements of liver. Fusion 
of automatic methods based on ensemble approaches exhibits best results with almost no addi-
tional time cost due to potential parallel execution of multiple models.
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tools by providing the highest performance 
measurements and substantially reducing 
the time needed for segmentation tasks, 
particularly in the liver (5, 6). 

The semi-automatic methods take ad-
vantage of various interaction mechanisms 
such as inserting seed points to initialize 
algorithms, manually measuring maximum 
diameters of the liver and distances in mid-
clavicular line or using advanced interfac-
es providing visual or some other form of 
feedback for optimal parameter specifica-
tion (7–10). However, these interactions are 
user dependent and additional analyses 
are required to show significant intra- and 
interobserver agreements. Unfortunately, 
such analyses are usually performed with a 
very limited number of operators (i.e., one 
to three) and cannot reflect a generaliza-
tion over repeatability and consistency (11). 
Moreover, interaction procedures and times 
may become tedious for challenging cases; 
therefore, several studies aim to automatize 
the interaction tasks by utilizing additional 
image processing strategies (12, 13).

On the other hand, the recent develop-
ments in emerging deep learning technol-
ogies enable construction of systems that 
are shown to be able to achieve higher 
accuracy and repeatability in a fully auto-
matic manner (14). Briefly, deep learning is 
a branch of machine learning that employs 
multi-layered neural networks having a 
much more complex architecture and inter-
nal feature extraction mechanism. In other 
words, deep learning has changed tradi-
tional feature extraction followed by classi-
fication pipeline to a simpler input-output 
strategy through utilization of deeper lay-
ers, which requires much more training data 
compared with machine learning. Deep 
learning and related models, especially 
convolutional neural networks (CNNs), are 

attracting growing number of researchers 
in all fields of medical image processing (15, 
16). Besides successful applications on clas-
sification, detection, and quality control; 
the most addressed application area is re-
ported to be the segmentation (14, 17–19). 
In many cases, deep learning models that 
are prepared for segmentation are shown 
to accelerate the progress of the ongoing 
research studies in terms of precision, sensi-
tivity, and processing time (20–22).

In 2007, SLIVER07 challenge provided 
such a comparative study of a range of al-
gorithms for liver segmentation under sev-
eral intentionally included difficulties such 
as patient orientation variations or tumors 
and lesions (19). Its outcomes reported a 
snapshot of the methods that were popular 
for medical image analysis and since then, 
abdomen-related challenges mostly aim 
disease and tumor detection rather than 
organ segmentation. However, healthy liver 
segmentation has many challenges as well 
as important application areas. In the last 
decade, machine learning based automatic 
strategies, especially deep learning through 
CNNs, introduced significant novelties and 
improvements to medical image segmen-
tation. In order to reflect these recent im-
provements to the field, a new challenge is 
organized and carried out for liver segmen-
tation from computed tomography (CT) 
with participation of 14 teams. 

In this article, the annotation framework, 
resulting data set, evaluation setup, details 
of participating methods together with 
their results and performance analysis are 
presented. The accuracy and repeatability 
of emerging machine learning based (i.e., 
deep learning) automatic segmentation 
algorithms are compared with those of 
well-established interactive semi-automat-
ic methods for determining liver volume in 
living liver transplant donors at CT imaging.

Methods 
Data analysis

This study was approved by the Institu-
tional Review Board and informed consent 
was obtained from patients who participat-
ed in the study. The CT database consists of 
20 contrast-enhanced abdominal data sets 
acquired from different patients using two 
different CT scanners, either 16-slice (Bril-
liance 16 Philips; Philips Medical Systems) 
or 64-slice (Brilliance 64 Philips; Philips 
Medical Systems) multidetector CT scanner. 
The pixel size (i.e., x-y spacing attribute of 

DICOM meta data) of series differs between 
0.7 and 0.8 mm, while their slice thickness 
is 3 to 3.2 mm. Each patient data includes 
an average of 90 slices (minimum 77, max-
imum 105 slices) that contains images of 
a healthy liver. In total, 597 slices (30% of 
data) were provided for training and 1325 
slices (70% of data) were used for tests. All 
images in a single CT series have similar 
Hounsfield unit (HU) range of adjacent or-
gans while the same tissue across different 
data sets have varying HU ranges due to 
the injection of contrast media. Atypical 
liver shapes (i.e., unusual size, orientation 
or atypical contour of the liver) composed 
15% of the database.

The CT data were manually segmented 
by a group of image specialists and radiolo-
gists in order to create ground truth masks. 
The ground truths were further annotated 
by another expert radiologist and the final 
masks are generated upon consensus. The 
training batch including anonymized DI-
COM images and ground truth masks are 
distributed to the registered competitors 
in order to prepare their algorithms before 
the challenge. Only anonymized DICOM im-
ages are included in the test bench and the 
ground truth maps are never shared with 
the participants. Instead, the participants 
submitted their results (i.e., binary image 
series) and only the evaluation results (i.e., 
grades) of their algorithms are provided to 
them.

Image segmentation methods
Among 14 participating teams, 12 seg-

mentation results were submitted: 6 of 
these results have used automatic ap-
proaches while 6 of them utilized interac-
tive methods. The following subsections 
describe the participating methods. More-
over, a concise comparison of the methods 
is presented in the Table 1.

Semi-automatic (interactive) image 
segmentation methods

In this category, six well-established 
semi-automatic image segmentation meth-
ods have participated to the challenge. The 
parameters of all these methods were ad-
justed by educated guess from biomedical, 
electronics and/or computers engineers 
with radiologic and digital image process-
ing background. Two 2D methods, namely 
MATLAB based Active Contours (2D-AC) 
and Super-pixels (2D-SP), and four Slicer 
software integrated 3D methods, namely 
Watershed (3D-WS), Fast Marching (3D-FM), 

Main points

• A comparative study was performed for seg-
mentation of liver and volume determination 
in living liver transplant donors at computed 
tomography (CT) imaging.

• The use of emerging deep learning frame-
works for automatic liver segmentation out-
performed the well-established semi-auto-
matic (interactive) methods.

• Segmentation performance can be further 
increased via ensemble methods and can 
save a substantial amount of time while im-
proving repeatability. 



Region Growing (3D-RG), and Robust Sta-
tistics Segmenter (RSS), were utilized (23). 
All these methods are well-established and 
their performances as well as pitfalls are 
known. Thus, they created a great baseline 
for comparisons with automatic methods.

Automatic approaches
All teams in automatic category have 

participated using a deep learning-based 
strategy which clearly reflects the current 
trend in radiologic image analysis. Despite 
its outstanding performance, training a 
deep learning CNN from scratch is difficult 
due to two requirements: 1) a large amount 
of labelled data and 2) a significant amount 
of expertise to ensure convergence. In or-
der to address these, 1) challenges were 
organized to provide the necessary medi-
cal data, and 2) template models were pre-
pared and released by experts. These mod-
els use different approaches designed by 
various architectures for good localization 
and enriched use of context at the same 

time. They aim modular structural designs 
for sharing networks and pre-trained mod-
els, using which it is possible to get start-
ed directly with established built-in tools, 
adapt existing networks to the imaging 
data, and quickly build new solutions to the 
other particular image analysis problems.

All the proposed methods, which are giv-
en in detail below, are based on well-known 
models, DeepMedic, U-Net, and Nifty-Net 
(24–26). Unfortunately, setting the parame-
ters of these models or making even slight 
revisions in the architecture to obtain high-
er performance are still far away from being 
trivial. On the other hand, it was recently 
shown by an extensive study that selection 
of these parameters can have drastic effects 
on performance (18).

DEU_DeepMedic: DeepMedic consists of 
a 3D CNN coupled with a 3D fully connected 
conditional random field. The generic nature 
of our system allows its straightforward ap-
plication for different lesion segmentation 

tasks without major adaptations. DeepMedic 
was originally developed for brain and its 
lesions’ segmentation. In the context of this 
challenge, DeepMedic was adopted to liver 
segmentation problem. However, it was run 
with its default parameters as given. 

DEU_Nifty-Net: Nifty-Net is another CNN 
platform designed for medical image anal-
ysis researches and has also been used with 
its default parameters as given (26). Nif-
ty-Net is an open source system and it uses 
TensorFlow framework. 

ITU_U-Net: The model is designed as a 
variation of U-Net architecture, which is 
built upon a fully convolutional network 
extended by large number of features at 
the up sampling that allows the network 
to propagate context information better to 
higher resolution layers. ITU_U-Net archi-
tecture starts with a 2D convolution. After 
that convolution, the result is down-sam-
pled in five down-sampling blocks having 

Liver segmentation and volume determination using automatic vs. semi-automatic methods • 13

Table 1. Comparison of the methods in terms of their advantages and disadvantages

Segmentation
method Advantages Disadvantages

AUTOMATIC 
(DEEP LEARNING) 
TECHNIQUES

DEU_DeepMedic • Easy to adapt the system 
for different modalities and 
tissues

• Easier installation procedure 
than other CNN based sys-
tems

• Ability to learn highly discrim-
inative features automatically 
during the training process

• Higher performance compared 
to conventional machine learn-
ing strategies

CNN-based automatic segmentation 
methods have similar disadvantages:
• It is hard to determine an adequate 

architecture for different semantic 
segmentation problems

• Experience is required to find optimal 
parameters for convergence

• They need huge amounts of data for 
training

• They need too much computational 
power (i.e., powerful graphics card, 
higher memory)

• There are too many parameters need-
ed for optimization

DEU_Nifty-Net • Maximum simplicity to 
understand

• Supports multi-modal input

ITU_U-Net
METU_U-Net
X_U-Net
Y_U-Net

• Increases resolution of the 
output images iteratively by 
fusing discriminative features 
from hidden layer

SEMI-AUTOMATIC 
(INTERACTIVE) 
METHODS

3D-RG • Easy to implement
• Segments very quickly on 

smooth tissues

• Needs too many user interactions
• Hard to determine proper thresholds
• Fails when border gradients are low

2D-AC • Robust against small artifacts 
and noise

• The boundary conditions must be tuned very well to achieve high perfor-
mance

3D-FM • Easy to implement
• Segments very quickly on 

smooth tissues

• Needs too many user interactions
• Sometimes iteration overflows from target object at lower gradient bor-

ders

RSS • Performs well on challenging 
areas

• Needs too much time for iterations
• Might need tedious user interactions

3D-WS • Shows higher performance 
on borders having lower 
gradient values

• Needs too much computational power
• Target organ area must be selected manually at each iteration

2D-SP • Works on meaningful regions 
not on the individual pixels 
itself

• Might need too many optimization steps for convergence

CNN, convolutional neural network
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a leaky Rectified Linear Unit (ReLU), con-
volution and batch normalization (BN), re-
spectively. Then, at the smallest size, con-
volution transpose is applied before the 
BN. In the up-sampling layers, the feature 
maps are again processed through a ReLU, 
a convolution transpose and BN. Moreover, 
corresponding output from down-sam-
pling layers are merged to the output. The 
architecture is given in Fig. 1, where each 
block represents an output of a parame-
trized layer (convolution, BN, deconvo-
lution) and numbers represent channel 
counts. For both convolution and convo-
lution transpose operations, 4 by 4 kernels 
with 2 strides is used. The model is trained 
for 300 epochs using SGD optimizer with 
0.9 momentum and 0.0002 learning rate. 
Data sets from SLIVER challenge are added 
to the training set. Based on the analysis of 
images belonging to the training set, in-
tensities outside (-1500,1500) HU range are 
removed, DICOM meta window level and 
width information and histogram equal-
ization are used to emphasize the intensity 
range for the liver as pre-processing steps. 
Histogram equalization and a simple mor-
phologic post-processing are also explored. 
The latter aimed to eliminate small outliers 
in the resulting image. However, they were 
not used in the final version of the method.

METU_U-Net: This model is also designed 
as a variation of U-Net for taking advantage 
of skipping connections that provide better 

error backpropagation and avoiding loss of 
information at deeper layers (Fig. 2). In ad-
dition, a Conditional Adversarial Network 
(CAN) is introduced in the proposed model. 
Contrary to ITU_U-Net, BN is performed be-
fore convolution (27). In this way, vanishing 
gradients are prevented and selectivity is 
increased. Moreover, parametric ReLU is em-
ployed to preserve the negative values using 
a trainable leakage parameter. In order to 
improve the performance around the edg-
es, a CAN, which generates similar images to 
the training data set based on the provided 
conditions, is employed during training (not 
as a post-process operation). This introduces 
a new loss of function to the system which 
regularizes the parameters for sharper edge 
responses. Although the proposed system is 
a 2D network, we have utilized 3D informa-
tion by concatenating the neighbor slices of 
the target input slice. Only normalization of 
each CT image is performed for pre-process-
ing and 3D connected component analysis is 
utilized for post-processing.

X_U-Net and Y_U-Net: The remaining two 
teams have also used U-Net with different 
configurations. Their systems had the same 
U-Net architecture, but their results were dif-
ferent because of the differences between the 
architecture and the tuning parameters. 

Evaluation strategy of segmentation results
Selecting the proper evaluation metric(s) 

has critical importance for an informative 

comparison. In the literature, there are 
many proposed metrics that compare the 
similarity of two 3D objects. On the other 
hand, none of them is sufficient to perform 
a fair evaluation individually (28, 29). In or-
der to overcome this problem, a weighted 
average of five different performance met-
rics was determined and considered as the 
final grade of the segmentation. These five 
different performance metrics are:
1. Volumetric overlap (VO)
2. Relative volume difference (RVD)
3. Average symmetric surface distance 

(ASSD)
4. Root mean square symmetric surface 

distance (RMSD)
5. Maximum symmetric surface distance 

(MSSD)
All outputs of these metrics were con-

verted to scores with help of some expert 
selected thresholds.

Volumetric overlap (VO)
Volumetric overlap is the number of vox-

els in the intersection of segmentation and 
reference, divided by the number of voxels 
in the union of segmented volume and ref-
erence volume.

Here  and  symbolise 
number of voxels in the intersection and 
union of the segmented and reference 
(ground truth) object. Its value is equal to 
100 for a perfect segmentation and 0 as 
the lowest possible value when there is no 
overlap at all between segmentation and 
reference. The threshold is determined as 
50%. If a VO of result has lower than 50%, 
the grade will be 0. If it is higher than 50%, 
the grade will remain as calculated. The 
grade conversion is shown in Fig. 3a.

Relative volume difference (RVD)
Relative volume difference (RVD) is the 

total volume difference between the seg-
mentation and reference which is divided 
by the total volume of the reference object. 
The absolute value is taken, and the result is 
multiplied by 100. 

This value is 0 for a perfect segmentation 
and larger than zero otherwise. Note that 

Figure 1. ITU_U-Net architecture and design.



the 0% can also be obtained for a segmen-
tation, which is not identical with reference 
but has same number of voxels. That is why 
only RVD is not sufficient for a fair evalua-
tion and many different error calculation 
metrics were preferred. In evaluation of 
the results, the RVD values higher than 10 
get a grade of 0. The RVD values between 
10 and 0 are mapped between 50 and 100 
as shown at Fig. 3a. Since the mapping cal-
culation from actual value to percent value 
has an inverse proportion, lower RVD rep-
resents higher performance.

Average symmetric surface distance (ASSD)
Symmetric surface distance metrics pro-

vides an alternative comparison method 
with a different approach. Let the distance 
of a voxel from a set of voxels belonging it 
be defined as: 

where d (x, y) is the Euclidean distance 
vector between the voxels incorporating 
the real spatial resolution of the image. To 
calculate symmetric surface distances, the 
border voxels of segmented and reference 
objects are determined. For each voxel at 
the border of first object, the closest bor-
der voxel in the second object is calculated. 
All these distances are stored for all border 
voxels from both reference and segmenta-
tion. The process is illustrated in Fig. 3e. 

In this work the distances were chosen at 
pixel level. The average of all the symmetric 
surface distances gives the average sym-
metric surface distance:

This value is 0 for a perfect segmenta-
tion. There is no upper limit. In our evalu-
ation, the ASSD values greater than 10 get 
a grade of 0. The values between 10 and 
0 are mapped between 50 and 100. There 
is inverse proportion between ASSD and 
grades (Fig. 3b). 

Root-mean-square symmetric surface 
distance (RMSSSD)

This metric is like ASSD, but it calculates 
the squared distances between the two 
sets of border voxels. After averaging the 
squared values, the root is extracted and 
gives the symmetric RMS surface distance. 
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Figure 2. a–c. METU adversarial network: (a), architecture; (b), generator; (c), discriminator network.
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This value is 0 for a perfect segmentation. 
There is no upper limit. In our evaluation, 
the RMSSSD values greater than 15 get a 
grade of 0. The values between 15 and 0 are 
mapped between 50 and 100. Again, there 
is inverse proportion between RMSSSD and 
grades (Fig. 3c).

Maximum symmetric surface distance 
(MSSD)

This metric is like the previous two, but 
only the maximum of all voxel distances is 
taken into account instead of the average. 

Maximum symmetric surface distance is 
one of the most critical error metrics be-
cause it represents the maximum allowed 
error margin in surgical operations. Its value 
is 0 for a perfect segmentation. There is no 
upper limit. In our evaluation, the MSSD val-
ues greater than 50 get a grade of 0. The val-
ues between 50 and 0 are mapped between 
50 and 100 (Fig. 3d). 

In the results section, the participating 
methods are compared using the grades 
calculated by the abovementioned met-
rics. Scores over all data sets are given in 
Fig. 4 and average values are given in Table 
2. Moreover, the volumes calculated with 
algorithms are compared to the ground 
truth (Fig. 5). Then, the complementarity 
and diversity of the automatic and interac-
tive methods are quantitatively analyzed by 
heatmap illustrations (Fig. 6). Based on the 
findings, two ensemble methods, name-
ly majority voting (MV) and simultaneous 
truth and performance level estimation 
(STAPLE) are employed to fuse the results 
of automatic methods and the results are 
compared to individual method perfor-
mances in Table 2. 

Results
The results were evaluated quantitatively 

by the grade values described in previous 
section and qualitatively by visual illustra-
tions. The mean values of the grades of all 
the segmentation methods on all test data 

(14 patients) are illustrated in Fig. 4 and the 
numerical details of these results are pre-
sented in Table 2. Automatic and interactive 
methods are indicated with different colors 
to analyze their results in detail. Moreover, 
the results of automatic methods, 3D and 
2D interactive methods are given in Fig. 4b–
4d. It can be clearly observed from the top 
rows of the Table 2 and Fig. 4b that auto-
matic methods using deep learning-based 
solution perform better segmentation than 
the interactive methods. An important 

drawback of these methods is observed as 
in some datasets, they might completely 
fail and generate very low scores. The first 
four algorithms on the chart are deep learn-
ing-based automatic methods and the first 
two are the proposed novel U-Net designs, 
which are followed by well-established in-
teractive strategies. These results point out 
the enhanced performance of automatic 
methods due to the recent developments 
in deep learning technology. Fig. 4c shows 
that the scores of 3D interactive methods 

Figure 3. a–e. Illustration of computing grades from metrics of: (a), volumetric overlap and RVD; 
(b), ASSD; (c), RMSD; (d), MSSD; and (e), symmetric surface distances. Green part of the score line 
represents the range above the given threshold, while the red part represents the results have zero 
score (i.e., below the threshold).

a

b

c

d

e



are between 0 and 75 points, which are less 
than the deep-learning-based automatic 
methods. It can be observed from Fig. 4d 
that RSS and 2D interactive methods have 
better segmentation performance com-
pared with the 3D interactive methods 
(maximum 85 points). However, they still 
left behind the performance of the auto-
matic methods. Considering the results of 
the previous challenges on liver segmen-
tation, performance differences between 
the two approaches were always in favor 
of interactive methods, but this has been 
changed by the deep learning models.

In addition to these scores, measured vol-
umes of the livers were also analyzed for au-
tomatic and interactive methods in Fig. 5a, 
5b. The mean volume of liver from ground 
truth was found to be 1409.93±271.28 mL. 
The mean volume from automatic methods 
was calculated as 1342.21±231.24 mL while 
it was 1201.26±258.13 mL for interactive 
methods showing higher accuracy and less 
variation on behalf of automatic methods. 
This information and regression analysis in 
Fig. 5a also support the fact that emerging 
deep learning methods are more reliable 
and stable than interactive methods for liv-
er segmentation. In Fig. 5b, Bland-Altman 
plot of the automatic and interactive meth-
ods shows the agreement between the uti-
lized methods.

The diversity and complementarity of 
the segmentation results were analyzed 
for qualitative evaluation of the outcomes. 
In order to do that, the binary results of the 
segmentation algorithms were summed 
cumulatively, and the values were mapped 
to virtual color scheme to obtain heatmaps. 
These maps are generated separately for 6 
interactive and 6 automatic methods in or-
der to observe their characteristic differenc-
es. The heatmaps are visualized according 
to two different color spectrums. The first 
one is generated to examine the true pos-
itive (TP) performance of the segmentation 
algorithms. A TP pixel that is found by all 
algorithms, would get a value of 6 and be 
represented by blue. A TP pixel that is found 
only by a single algorithm, would get a val-
ue of 1 and be represented by green. All TP 
values in between correspond to interme-
diate number of findings and assigned to 
a color inside the spectrum (shown on the 
right side of the Fig. 6). A TP pixel that could 
not be found by any algorithm is represent-
ed by purple to create contrast and draw 
attention. The second color spectrum aims 
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Figure 4. a–d. Scores of: (a), all segmentation methods; (b), automatic methods; (c), interactive 3D 
methods; (d), interactive 2D and RSS methods on test dataset. Each method has a unique marker. 
Automatic methods are represented by orange color, while interactive methods are blue.

a

b

c

d
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to highlight the false positives (FPs). An FP 
pixel that is incorrectly found by a single al-
gorithm, would get a value of 1 and be rep-
resented by orange color. An FP pixel that 
is incorrectly found by all algorithms, would 
get a value of 6 and be represented by red. 
Similar to TP case, the values in between are 
represented by corresponding colors in the 
spectrum. 

According to Fig. 6, the inhomogeneous 
characteristics of the contrast-enhanced 
liver parenchyma and difficulties associat-
ed with its segmentation cause results to 
have varying characteristics. For example, a 
segmentation algorithm that is sensitive to 
intensity changes of voxels would probably 
work fine for the organ borders, but would 
miss the veins inside of the liver at the same 
time. It can be observed that there are sig-
nificant differences between the heatmaps 
of interactive and automatic methods, 
which can be listed as follows: 

1. Considering agreement rates on TPs, 
the interactive methods tend to make 
regional mistakes due to the spatial en-
largement-based characteristics. They all 
seem to have almost no problem when 
the border of the liver is evident due to 
the attenuation difference of the contigu-
ous anatomic structures such as fat tissue 
and gall bladder. However, it is harder to 
differentiate the outline when the liver is 
adjacent to isodense structures such as 

Table 2. Mean and standard deviation of all methods’ results on test dataset (14 patients)

Team

VO RVD ASSD RSMSSD MSSD
Final 
score% Grade % Grade mm Grade mm Grade mm Grade

ITU_U-Net (24) 87.9±2.1 87.9±2.1 4.3±1.8 73.0±4.4 1.7±0.3 66.4±5.4 2.8±0.6 65.4±3.8 26.6±4.7 45.4±14.4 79.6

METU_U-Net (26) 90.4±1.3 90.4±1.3 2.0±1.1 90.0±4.8 1.5±0.3 67.5±1.9 3.1±1.0 64.6±4.8 35.5±10.6 31.2±14.5 79.5

DEU_DeepMedic (23) 85.4±8.3 85.4±8.3 4.4±3.0 72.9±6.7 1.1±2.5 88.7±3.9 1.5±6.1 85.8±4.9 19.9±16.8 53.0±14.6 77.2

DEU_Nifty-Net (25) 78.5±2.9 78.5±2.9 18.7±4.2 42.1±8.2 0.4±1.3 94.5±3.6 1.1±2.7 88.7±4.0 10.3±12.1 91.9±17.3 74.5

2D-AC (27) 88.1±1.3 88.1±1.3 9.7±1.3 31.3±4.3 1.5±0.8 67.2±1.6 2.5±0.3 66.6±1.7 22.6±3.8 50.3±13.2 72.8

RSS (27) 82.5±11.9 82.5±11.9 6.0±2.4 55.2±7.3 1.9±0.4 58.4±3.3 3.8±0.7 55.2 ±2.3 27.6±4.9 35.7 ±12.4 68.2

3D-WS (27) 80.3±11.6 80.3±11.6 6.1±1.5 59.9±12.3 3.8±0.7 49.6±2.0 6.6±1.1 46.5±2.3 29.8±5.1 31.9±13.6 62.3

2D-SP 74.1±2.8 74.1±5.5 7.0±2.7 56.4±8.2 4.6±0.7 48.4 ±1.6 7.7±1.3 46.9±2.1 44.6±6.4 24.0 ±16.8 56.1

X_U-Net (24) 70.7±2.6 70.7±4.7 10.8±2.7 26.6 ±8.1 4.4±0.7 52.7±1.4 7.4±2.1 45.5±3.8 55.4±18.0 18.9±17.9 49.7

3D-RG (27) 64.8±10.4 64.8±11.3 14.4±3.3 7.8±8.5 4.3±1.1 48.5±4.6 6.8±2.5 46.7±5.4 87.6±46.1 18.9±39.4 45.3

Y_U-Net (24) 79.5±4.9 79.5±8.4 12.1±4.2 36.1±4.3 5.4±1.6 39.6±6.4 14.8±3.7 13.3±6.2 110.3±16.1 0.0±0.0 37.6

3D-FM (27) 46.8±15.8 46.8±13.3 19.6±7.4 0.0±0.0 5.3±1.8 16.2±7.9 7.0±2.4 28.1±4.5 31.4±12.3 11.5±17.6 23.7

The results include both real outputs of metrics and their calculated grades with ±95% confidence intervals.

Figure 5. a, b. (a), Regression analysis and (b), Bland Altman plot of liver volumes for both automatic 
and interactive methods.

a

b



gastric wall, diaphragm, and isodensely 
enhanced vena cava inferior. On the other 
hand, the automatic methods show much 
more distributed mistakes all over the liv-
er region due to their classification-based 
characteristics.

2. Although there are almost no parts of 
the liver which cannot be detected by any 
of the employed six automatic methods 
(the percentage of false negative (FN) voxels 
is under 0.3%), there are small regions that 
cannot be detected by interactive ones (an 
example is shown in Fig. 6). This result is par-
ticularly important because FNs are much 
more unlikely to be recovered by post-pro-
cessing operations after segmentation, 
while FPs can be reduced significantly. 

3. Considering agreement rates on FPs 
(reddish color map, which was chosen to ex-
plore outcomes of the methods violating the 
ground truth) the interactive methods seem 
to make much less over segmentations. This 
is partly related to iterative parameter ad-
justment of the operator which prevents un-
expected results. On the other hand, the FPs 
of automatic methods are distributed over a 
larger area. As expected, the agreements on 
FPs reduces as the distance from the liver re-
gion increases. 

In the latest medical image processing 
applications and challenges, it is observed 
that the fusion of the outcomes of differ-
ent methods through ensemble systems 
outperformed the utilization of each com-

ponent method individually. Moreover, one 
of the main advantages of the automatic 
methods is that they can be run in parallel 
as they do not need any user input or inter-
action. Thus, it is possible to utilize all the 
six automatic methods at the same time 
and fuse their results in order to obtain a 
superior performance almost without any 
additional time. To analyze this possibility, 
two well-known fusion methods, MV and 
STAPLE, were adapted to segmentation re-
sults and the contributions of using ensem-
bles were observed (30, 31). 

MV is one of the most straightforward 
methods to achieve a segmentation fusion. 
It simply considers segmentation results 
of all algorithms pixel-by-pixel. If a pix-
el segmented as “true” by at least n/2 of n 
algorithms, the value of this pixel is deter-
mined as “true” where n is total number of 
segmentation results. Since MV is known 
to be sensitive to the number of segmen-
tation results, the effect of n is analyzed by 
increasing its value (i.e., the number of con-
tributing methods) one by one using three 
selection strategies i) random, ii) best-to-
worst, and iii) worst-to-best (30). 

For instance, considering random selec-
tion, MV starts by two randomly selected 
segmentation results and application of MV 
to whole data sets. At each iteration, anoth-
er randomly selected segmentation result is 
added to MV system. The process is finalized 
after using all methods. In the second case, 
MV starts by using the two most successful 
results on Table 2. In the next iteration, the 
third most successful result is added, and 
this procedure is repeated until all results 
are used. The third case is just the opposite 
order of the second case. The results pre-
sented in Fig. 7a show that MV algorithm 
has a potential for increasing performance 
of fusion with respect to single segmenta-
tion results. The most successful segmenta-
tion had a score of 79.67, while MV reached 
the score of 86.70 when all methods were 
employed. Considering only the automatic 
methods, MV got 83.87, which is only 2.83 
lower than using all methods (Fig. 7b).

The second fusion method, namely STA-
PLE algorithm (31), depends on expecta-
tion-maximization approach and it signifi-
cantly differs from MV. The performances of 
the pre-segmentations are estimated based 
on comparison to an evolving estimate of 
the reference standard segmentation at each 
iteration of the expectation-maximization. 
The new performance parameters are used 
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Figure 6. a, b. Colored heatmap example of (a), interactive and (b), automatic segmentation 
algorithms.

a b

Figure 7. a–d. Performance of (a), majority voting (MV) with all methods; (b), MV with automatic 
methods; (c), STAPLE with all methods; (d), STAPLE with automatic methods with respect to number 
and quality of segmentation results.

c

a

d
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to update the reference standard segmenta-
tion. STAPLE estimates performance of the 
templates directly by estimating the ground 
truth. However, there is no direct association 
between the intensity similarity of the tem-
plate and the target image, and the perfor-
mance of the templates in the locally weight-
ed fusion algorithms. In other words, STAPLE 
uses only segmentation results. There is no 
input of ground truth or the original DICOM 
images. Similar with MV trials, the STAPLE is 
also applied in three different ways (i.e., ran-
dom, best-to-worst and worst-to-best).

According to Fig. 7c, STAPLE shows differ-
ent performance curves under different con-
ditions. It reaches maximum score at fusion 
of six segmentation results if the results are 
ordered best-to-worst. The success of STAPLE 
shows monotonically increasing curve when 
the segmentation results are ordered from 
worst-to-best. In this order, STAPLE needs at 
least two thirds of all segmentation results. 
On the other hand, the randomly sequenced 
results have a performance between these 
two cases as expected. 

The final score of STAPLE reaches its max-
imum in any scenario and outperforms all 
individual segmentation methods and also 
MV with a score of 88.74. Considering only 
the automatic methods, STAPLE got 86.02, 
which is only 2.72 lower than using all meth-
ods (Fig. 7d). It can be easily said that STAPLE 
boosts the performance of final segmen-
tation and it is a preferable fusion method. 
It has a unique approach for an ensemble 
problem. However, it needs too much time 
to converge a final estimation because of the 
requirements of many iterations. 

Discussion
This study has evaluated the perfor-

mance of the state-of-the-art deep learning 
models on automatic segmentation of the 
liver data. As such, it provided hints regard-
ing the accuracy and robustness of various 
modern techniques that can be used to 
direct future research. It was also clearly 
shown that the participating teams at the 
automatic segmentation category outper-
formed the well-established semi-automat-
ic approaches. Thus, the automatic meth-
ods have reached the high reliability level 
of the best semi-automatic methods and 
now provide a better alternative as they are 
much faster, operator independent, and ex-
ecutable in parallel.

Also, the challenge served as a great tool 
by offering expert annotations, retrospec-

tive analysis and descriptions of challeng-
ing cases and dense sampling of sparse 
conditions (e.g., atypical liver shapes). 
Moreover, it allowed application of differ-
ent approaches to a common dataset and 
evaluation of the results of each method us-
ing the same metrics. This not only provid-
ed a comparative analysis to determine the 
state of the art, but also helped determine 
diversity and complementarity of different 
approaches. In the context of the outcomes 
of the competition, the most successful 
four automatic approaches are analyzed 
in detail. The models that took the third 
and fourth places used “DeepMedic” and 
“NiftyNet” frameworks, respectively, with 
slight parameter changes for adaptation 
to liver segmentation problem and can be 
considered to produce baseline results for 
deep learning approaches. The other two 
were novel deep learning models, ITU-U 
and METU-U, providing genuine modifica-
tions on another framework, namely U-Net. 
These two models are introduced for the 
first time in this study.

One of the most important advantages of 
the automatic approaches is that they can 
be utilized in parallel and their outcomes 
can be combined to obtain a superior per-
formance through ensemble systems. The 
EMMA model, which won the BRATS chal-
lenge in 2018, is a great example of such 
fusion systems (32). Thus, in this study, the 
outcomes of the participating algorithms 
were also used as the inputs of two well-es-
tablished fusion approaches: 1) MV and 
2) STAPLE. The results of both algorithms 
have outperformed all component meth-
ods. Performance of MV is known to vary 
depending on number and order of suc-
cessful results. As such, MV boosts the per-
formance of segmentation if the results of 
many methods are included. On the other 
hand, it is also possible to obtain a superi-
or result with MV if there are only just a few 
outstanding results. These outcomes are 
observed to be similar with another MV trial 
in the literature (33). STAPLE has provided 
the highest scores by performing slightly 
better than MV, but it required a significant 
time to converge. According to our anal-
yses, the advantage of the MV is its speed 
and high reduction of false positive voxels 
outside of the liver. Our observations show 
that the results of MV have diverse charac-
teristics outside of the liver and therefore, it 
is easy to eliminate false positives. On the 
other hand, STAPLE can estimate the true 

outcome better due to its inner machine 
learning based strategy allowing higher 
accuracy levels. Thus, it can be confident-
ly concluded that the ensemble systems 
allow further improvements on automatic 
methods with almost no time loss if the al-
gorithms can be executed in parallel. 

This study has several limitations. First, 
slice thickness can be considered as a lim-
iting factor on segmentation performance. 
Having 3 mm thickness gaps, the liver parts 
having oblique interfaces relative to the im-
aging plane with the surrounding organs 
(especially the heart and the stomach) are 
observed to be affected most from mis-seg-
mentations, since they are much more sen-
sitive to partial volume effects. On the other 
hand, borders that are more perpendicular 
to the imaging plane (such as caudate lobe) 
are less sensitive and segmented with bet-
ter performance. These observations also 
agree with (29) and (33). Second limitation 
is the number of data sets and modalities 
included in the study (i.e., 20 donors, 8 for 
training, 12 for testing, acquired by 2 mo-
dalities). A larger number of donors would 
allow a better training especially for deep 
learning models, which have used addition-
al techniques (such as data augmentation 
or mirroring) or other similar databases (29) 
to compensate this limitation. Increasing 
the number of modalities (probably with-
in the framework of a multicenter study) 
would allow more diversity of the data sets, 
which is known to have positive effects 
on the performance of machine learning 
based techniques. Third, the evaluation and 
grading strategy also has some limitations. 
In this study, the volumetric measurements 
assume a unit density for the liver and the 
effects of blood vessels in the segmented 
liver, partial volume effects and slice thick-
ness have been ignored. An interobserver 
analysis was performed to observe max-
imum possible score as well as variability 
and repeatability. The two manual segmen-
tations performed by the same expert on 
the same data set at different times result-
ed in liver volumes of 1491 mL and 1496 
mL. The volumetric overlap is found to be 
97.21%, while RVD is 0.347%, ASSD is 0.611 
(0.263 mm), RMSD is 1.04 (0.449 mm), and 
MSSD is 13.038 (5.632 mm). These measure-
ments yielded a total grade of 95.14, which 
is higher than all algorithms but not close to 
perfect. Especially the MSSD, which has by 
far the worst score (i.e., 86) among the five 
measurement parameters, is significantly 



sensitive to image characteristics. Thus, this 
variability should be considered when eval-
uating the performance of the algorithms. 

In conclusion, in this validation study 
performed with living donors for liver trans-
plantation, the use of emerging deep learn-
ing frameworks for automatic liver segmen-
tation outperformed the well-established 
semi-automatic (interactive) methods ac-
cording to five different metrics. Moreover, 
deep learning models can work in parallel, 
if necessary computational power is avail-
able. Deep learning methods can further 
increase the segmentation performance 
via ensemble methods and can save a sub-
stantial amount of time while improving 
repeatability. Promising future research 
studies would include performing similar 
comparative analysis for segmentation of 
liver from magnetic resonance imaging (34) 
and extending CT segmentation to vascular 
analysis (35). 
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